PoliMIce
The PoliMice suite is a computational framework for the simulation in-flight ice accretion problems developed at Politecnico di Milano.
This ice accretion engine is capable of performing fully three-dimensional icing simulations, its highly modular structure allows to couple the ice accretion engine to several CFD solvers for the solution of the aerodynamic field and for the reconstruction of droplet trajectories.
The PoliMIce framework includes a three-dimensional mesh warping tool which allows to avoid the re-meshing process around the ice-accreted shape.
The PoliMIce framework includes a three-dimensional mesh warping tool which allows to avoid the re-meshing process around the ice-accreted shape.
The PoliMIce suite has been developed with the aim of producing a platform where the ice accretion phenomenon can be studied and through which new ice accretion models could be implemented and validated.
Flowmesh
See also http://www.aero.polimi.it/flowmesh/
ND-NI
The Nozzle Design code for Non-Ideal Compressible-Fluid Dynamics (ND-NI) implements a non-ideal compressible-fluid implementation of the method of characteristics. ND-NI is capable of designing the supersonic divergent part of a convergent-divergent nozzle operating in the non-ideal compressible-fluid regime to guarantee uniform exit conditions (either pressure or Mach number can be selected). The code was successfully used to design the test section of the TROVA facility at Politecnico di Milano and of the ORCID test-rig at the Technical University of Delft. It was also applied to the preliminary design of supersonic blade passages for ORC application. The fluid dynamics model is coupled to simple thermodynamic models (ideal gas, van der Waals gas, Martin-Hou) and to the FluidProp library (www.fluidprop.com).
VirtuaSchlieren
The VirtuaSchlieren code is a post processing tool capable of generating virtual Schlieren images from computational fluid dynamic (CFD) solutions.
Due to the highly expensive nature of the numerical procedure required by this technique, the code was designed to exploit both the Message Passing Interface (MPI) protocol and the NVIDIA CUDA technology.
The resulting code is then suitable for a massive parallel applications such as ray tracing being capable of easily processing millions (in the order of 1e7) of light rays in a small amount of time.
The resulting code is then suitable for a massive parallel applications such as ray tracing being capable of easily processing millions (in the order of 1e7) of light rays in a small amount of time.
The code was designed having non-ideal flows in mind: in order to compute the value of the fluid refraction index with the required accuracy, several physical model were made available (Gladston-Dale, Lorentz-Lorenz..).
Picture shows the discharge section of a de Laval nozzle: on the image upper side the density field is depicted while the resulting virtual Schlieren image is reported in the lower half. |
No comments:
Post a Comment